
16

Formal Modelling and Analysis of Man in The Middle

Prevention Control in Software Defined Network

 Daniel Aviz Bastos

IPT Brasil

daniel.aviz@gmail.com

Adilson Eduardo Guelfi

IP/UNOESTE

guelfi@unoeste.br

Anderson Aparecido Alves da Silva

 IPT/UNIP/SENAC/USP

anderson.silva@pad.lsi.usp.br

Marcelo Teixeira de Azevedo

Universidade de São Paulo - USP

mdeazevedo@gmail.com

Alberico de Castro Barros Filho

Universidade de São Paulo - USP

alberico.castro@usp.br

Sergio Takeo Kofuji Correio

Universidade de São Paulo - USP

kofuji@usp.br

Abstract. The Man-in-the-Middle (MITM) attack is still considered a threat to

networks. On the other hand, Software-Defined Networks (SDN) has been

gaining market space, precisely because of the ability to dynamically

manipulate data flows through a programmable interface. Colored Petri Nets

(CPN) are considered a proper tool for modeling distributed systems and

security controls. The objective of this work is, using CPN, model and analysis

a security control in SDN that could detect and correct the Man-In-The-

Middle (MITM) attacks based on ARP spoofing. This goal is achieved

modeling a SDN, a MITM attack and the proposed security control to reach a

complete state space analysis. The state space analysis showed that a MITM

attack is possible in a SDN environment increasing the number of possible

states in 67%. The proposed security control could detect and correct the

packets generated with forged data, preventing the attack, and decreasing by

96.22% the number of possible states while the SDN is under attack. Thus, this

work obtained an effective security control to avoid MITM attacks based on

ARP spoofing, did not falling on the main limitations presented in the previous

solutions to avoid MITM attacks in traditional networks, such as: the existence

mailto:daniel.aviz@gmail.com
mailto:guelfi@unoeste.br
mailto:anderson.silva@pad.lsi.usp.br
mailto:mdeazevedo@gmail.com

17

of single point of failures or the need to update or patch the ARP protocol or

system’s kernel at the devices connected to the network.

Keywords: ARP Poisoning, Colored Petri Nets (CPN), Man-in-the-Middle

(MITM), Software Defined Networks (SDN).

Resumo. O ataque Man-in-the-Middle (MITM) ainda é considerado uma

ameaça para as redes. Por outro lado, as redes definidas por software (SDN)

vêm ganhando espaço no mercado, precisamente devido à capacidade de

manipular dinamicamente os fluxos de dados por meio de uma interface

programável. As redes de Petri coloridas (CPN) são consideradas uma

ferramenta adequada para modelar sistemas distribuídos e controles de

segurança. O objetivo deste trabalho é, usando o CPN, modelar e analisar um

controle de segurança na SDN que possa detectar e corrigir os ataques Man-

In-The-Middle (MITM) com base na falsificação do ARP. Esse objetivo é

alcançado modelando uma SDN, um ataque MITM e o controle de segurança

proposto para alcançar uma análise completa do espaço de estado. A análise

do espaço de estados mostrou que é possível um ataque MITM em um

ambiente SDN, aumentando o número de estados possíveis em 67%. O

controle de segurança proposto pode detectar e corrigir os pacotes gerados

com dados forjados, impedindo o ataque e diminuindo em 96,22% o número

de estados possíveis enquanto a SDN encontra-se sob ataque. Assim, este

trabalho obteve um controle de segurança eficaz para evitar ataques MITM

baseados na falsificação de ARP, não se limitando aos principais problemas

apresentadas nas soluções anteriores para evitar ataques MITM em redes

tradicionais, tais como: a existência de um ponto único de falha ou a

necessidade de atualizar ou corrigir o protocolo ARP ou o kernel do sistema

nos dispositivos conectados à rede.

Palavras-chave: Envenenamento ARP, Rede de Petri Colorida (RPC), Man-

in-the-Middle (MITM), Redes Definida por Software.

1. INTRODUCTION

 The Man-in-the-Middle (MITM) attack is considered a threat to the traditional

networks until now. The attacker poisons the Address Resolution Protocol (ARP) cache

table of their victims, so that all packets sent by the victims is forwarded to the attacker

machine, by the network switch, which delivers the packets based only at the destination

Media Access Control (MAC) address (KUMAR; TAPASWI, 2012).

 Many solutions have been proposed to prevent MITM attacks, but none of them

is considered a versatile solution, because they are only effective in some special

scenarios (TRIPATHI; MEHTRE, 2014). For example, the proposed solutions based on

cryptography, like Secure ARP and Ticket based ARP (BRUSCHI; ORNAGHI; ROSTI,

2003) and (LOOTAH; ENCK; MCDANIEL, 2007), does not have backward

compatibility with any existing network infrastructure due the need to implement an

updated version of the ARP protocol. Other solutions were based on:

• Patch the host kernel, like Antidote (TETERIN, 2003);

18

• Passive detection, like ARPWATCH (LERES, 2006);

• Centralized server, like ARP Central Server – ACS (KUMAR; TAPASWI,

2012);

• Probe packets, as proposed by Poonam Padey (PANDEY, 2013);

• Discrete event systems, like DES (BARBHUIYA et al, 2011).

 Those solutions involve a probing process that could be spoofed by the attacker

too, and the attacker can register all Internet Protocol (IP) addresses to himself, before

the legitimate machine arrives at the network, which can make the attack effective to the

environment. Other solutions listed by Tripathi and Mehtre (2014) are based on an

ICMP secondary cache, as proposed by Tripathi and Mehtre (2014) and Arote and Arya

(2015), which also involve a probing process that could be spoofed by the attacker, and

do not allow more than one mapping per MAC address, which makes it incompatible

with virtual environments.

 Even a new solution proposed by Cox et al (2016), that uses an application

installed at a Software Defined Network (SDN) Controller to avoid the attacker to

poison the victims ARP cache table, could not be considered a versatile solution. As it

uses the Dynamic Host Configuration Protocol (DHCP) server database as a trusted

source for IP-MAC bindings, attacker could poison it, as it is based on the DHCP

messages, which are not connection oriented and could be forged by the attacker.

Another issue about that solution is that it includes an additional delay at the network, as

all packets needs to be forwarded by the switch to SDN controller, to be analyzed by the

proposed application, forwarded again to the switch, and finally forwarded to the packet

destination.

 SDN is a new network architecture designed to simplify and improve network

management with high flexibility (ANAN et al, 2016). It is done by decoupling the

architecture in tree layers. Firstly, the control plane, or control layer, is the system that

makes decisions about where the traffic should be sent. Secondly, the data plane, or

infrastructure layer, is the system that forwards the packets to its destination. The third

layer called application layer, which has several SDN applications that employ an open

Application Programming Interface (API) to communicate with the SDN controller.

 The communication between the control layer and data layer is done with a

standard protocol, called Openflow, which creates data flow rules that are installed at

the switches, to forward the packets as defined by the SDN controller. Each flow rule

has some packets characteristics (any field of the packet header), and one or more

actions that should be applied to the packet which matches the rule. These actions can

forward the packet to a specific port or change the value of any packet header field. The

SDN architecture can enhance the network security enabling elevated levels of

monitoring, analysis and response. The logical centralization of the control layer enables

the creation of innovative security services and applications that could increase the

network security level at all (MASOUDI; GHAFFARI, 2016).

 The Colored Petri Nets (CPN) is a formal method for modeling, designing,

specification, simulation, validation and verification of systems or process. A CPN

model is made of places (circles), transitions (quadrilaterals), arcs (unidirectional or

19

bidirectional arrows between places and transitions) and marks that are data stored at

places or being processed by transitions. Color sets (colset) are data types like integer,

string, boolean, etc. Each combination of marks and places is called a state. One of the

methods to analyze the CPN model is called state space analysis, and it is done with the

creation of a graph, in which the nodes represents each state of the CPN model, and the

arcs, between nodes, represents the changes in the marks between each state of the CPN

model. After the graph is created, it is possible to analyze the properties of the CPN

model and make queries to find specific states that satisfy some conditions (JENSEN;

KRISTENSEN; WELLS, 2007).

 The objective of this work is, using CPN, model and analysis a security control

in SDN that could detect and correct the MITM attacks based on ARP spoofing. This

security control acts at the Openflow switch to detect and correct the attack, while the

packets are passing through the network, using data collected by an application installed

in the SDN controller.

 This paper is organized as follow: section 2 summarizes some theoretical

references; section 3 discusses related works; section 4 presents the proposed solution

and describes the CPN model; section 5 describes the initial state space analysis in some

scenarios that have been used to confirm the proposed control works, and after some

important results; and finally, section 6 shows our final conclusions and future works.

2. THEORETICAL REFERENCE

2.1. MAIN IN THE MIDDLE ATTACK (MITM)

 The MITM attack aims to intercept the communications between two or more

machines, without the victim awareness. The attacker can read, change or replace the

traffic to attend its proposal. It is done using impersonation techniques, like ARP

spoofing, DHCP spoofing, Domain Name System (DNS) spoofing, Border Gateway

Protocol (BGP) spoofing and others.

 Network devices use ARP protocol to create bindings between MAC and IP

addresses at the network. This protocol is vital to any network, but it was not designed

to authenticate the messages and to deal with malicious hosts. The attacker creates a

MITM attack, using ARP spoofing, adding or updating the victim local ARP cache table

with forged data. It sends packets with forged ARP reply messages, which creates

forged bindings between the attacker MAC address and the communication destination

IP address. After that, every time that the victim machine creates a packet to destination,

it writes the correct destination IP address, but the attacker MAC address at the packet

header. As the network devices deliver the packets based on its destination MAC

address, the packet goes to the attacker machine that manipulates the data, and then

forwards the packet to its correct destination. If the attacker repeats the MITM attack on

both sides of the communication (source and destination), the attacker can intercept the

communication in both directions.

2.2. SOFTWARE DEFINED NETWORK (SDN)

 The computer networks are composed of two main layers, the control layer and

the data layer. The control layer is responsible to define the best path to the packets

20

travel from one point to another in the network. This layer provides services like

routing, switching, trunking and spanning tree, for example. The data layer is

responsible to buffer the data when it arrives and delivers it to the correct device port, as

the control layer defined.

 In traditional networks, every network device implements both layers locally,

and each manufacturer implements them in their own way, in order to provide the

network services and the integration between each layer in a closed way. This

architecture disallows other systems to interact with any of these network layers. The

network devices made by different manufacturers cannot interact between them or even

share information about the network.

 The SDN split the two layers in distinct locations at the network. The control

layer is centralized at one central component called SDN controller, and the data layer

(also called infrastructure layer) is distributed across the network in every network

device. An integration protocol was created to connect the two layers that are separated

physically. Two protocols were proposed: The Internet Engineering Task Force

(FORCE, 2014) proposed the Forwarding and Control Element Separation (ForCES);

and the Open Networking Foundation proposed the Openflow (FOUNDATION, 2015).

The powerful support by the industry and the academy makes the Openflow the

standard protocol to SDN.

 As depicted in Figure 1, the SDN controller (control layer) is responsible to

provide all network services, like routing, switching etc. It has two interfaces, called

northbound and southbound. The northbound interface allows the SDN controller to

interact with any business application using APIs, allowing applications to interact and

access information about both control and data layers. The southbound interface allows

the SDN controller (control layer) to interact with all infrastructure layer, receiving and

sending information about the network traffic to all network devices, as defined by the

network services running inside the SDN controller. This communication uses the

Openflow protocol to standardize the information exchange between the SDN controller

and the infrastructure layer.

Figure 1. Openflow Architecture.

Source: Open Networking Foundation (FOUNDATION, 2015)

 The control layer translates its decisions to some data flow rules, which are

composed by these main fields: match fields, priority, counters, instructions, timeouts,

21

cookie and flags. The match fields specify which packet header fields and values should

be used to choose which flow rule should be applied to a specific packet. The priority

field defines the rule position inside the switch flow table. The counters field is used to

count how many packets used a specific flow rule. The instructions field defines which

actions should be done with the packet that matches to a specific rule. The timeouts field

defines the amount of time before a flow rule is expired, and the flags field determines

what should be done with the flow rule (insert, update, delete etc.). The SDN controller

organizes all rules managed by it using the cookie field. These rules are sent to the

infrastructure layer, which will apply them to the network traffic.

 Openflow switches compose the data or infrastructure layer. This switch has

only one interface, which is used to communicate with the SDN controller. Each

Openflow switch has one or more flow tables that store all data flow rules received from

the SDN controller. When a packet arrives, it is stored in a buffer area, and then its

header is collected and compared to every data flow rule inside of the flow table, from

the first until the last rule. When packet header fields match with the rule match fields,

the switch stops the search and applies all actions specified by the rule instructions field.

These actions include, but it is not limited to, change some header field values or

delivery that packet to a specified device port. If no rules match to the packet header

data, the switch can be configured to discard the packet or send the entire packet to the

SDN controller, which will exanimate the packet to decide what actions should be

applied. After that, the SDN controller could create a new flow rule that is distributed to

one or more Openflow switches. In this case, the next time that a similar packet arrives

at the network, the Openflow switch will take the actions defined without sending the

packet to the SDN controller again.

3. RELATED WORKS

 Tripathi and Mehtre (2014) considered five distinct factors to compare

previously proposed solutions to ARP spoofing in traditional networks. The first factor

defines that the proposed solution should be resistant to flood of spoofed ARP

messages. The second factor defines that the proposed solution should not allow the

attacker to register all unused IP address before the legitimate client ingress the network.

The third factor says that the proposed solution should be compatible with the existing

network infrastructure. The fourth factor identifies if the proposed solution cannot be

considered a single point of failure. Finally, the fifth factor defines that the proposed

solution should allow more than one IP address to each MAC address.

 After defining those factors, the authors conducted a review on methods of

control used to detect and prevent ARP poisoning attacks and met these methods in

seven groups. This first group has solutions that use encryption to protect the ARP

messages exchanged between the network clients. The second group lists the proposed

solutions that patch the system kernel, so the machine can identify when it receives an

ARP message with forged data. The third group has controls that use a passive detection

scheme to identify when the attacker starts spoofing the packets and alert all legitimate

network clients. The fourth group lists solutions that use centralized detection and

validation servers, which are responsible to check if the clients can trust in the ARP

messages that it receives. The fifth group has solutions that use ICMP probe packets to

validate the ARP messages. The sixth group lists solutions that use host-based discrete

events to observe events generated by the system and decide if the system is under a

22

normal or failure condition. Finally, the seventh group has solutions that use a

secondary ARP cache that is updated using ICMP messages.

 At the end of the work, Tripathi and Mehtre (2014) analyses every group of

proposed solutions against the five factors considered at the beginning. The authors

concluded that none of the solutions analyzed attend to all the factors, and cannot be

considered a versatile control. The main advantage of this work was list the main MITM

proposed controls. However, they analyzed them only at theoretical level, and did not

test or model them.

 Cox et al (2016) also proposed a control to detect and eliminate ARP spoofed

packets in a SDN environment. The work achieves this goal creating an application,

called Network Flow Guard for ARP (NFGA), that should be installed in the SDN

controller, which inspect every DHCP and ARP packets to create a centralized ARP

table, with information about IP-MAC bindings. When a host is available to the

network, the NFGA only allows communication between the machine and the DHCP

server. After analyzing the initial DHCP messages and update the centralized ARP

table, the machine can communicate with any other machine in the network. Then, the

NFGA inspects every ARP packet, discarding packets with forged data, and sending

packets with correct information.

 The proposed control in Cox et al (2016) is effective to prevent ARP spoofing

and MITM attacks, as consequence. However, as it uses a centralized application and

table to check if the packets have forged data, the NFGA can be considered a single

point of failure, and increases the network latency, as every DHCP and ARP packet

should be sent by the Openflow switch to the SDN controller to be analyzed and

delivered back to its destination.

 Sasan and Salehi (2017) proposed the creation of an application, written using

Python language, called arppois, which should be installed at the SDN controller. The

authors assumed they have a trusted database of IP-MAC addresses, which will be used

by arppois to verify the payload of all ARP Reply messages and check if the IP-MAC

binding is correct. If the binding does not match with the trusted database, the packet is

discarded. As the Openflow switch cannot check information inside the packet payload,

all ARP Reply messages should be forwarded by the switch to the SDN controller,

where the arppois can analyze the packet payload and decide what should be done with

the packet. They tested the proposal using a laboratory environment created using the

MININET software to simulate the infrastructure layer, and POX software as the SDN

controller.

 The authors concluded that the proposed solution was efficient to prevent the

ARP poisoning of the victims and the MITM attack as consequence. A second

conclusion was that the SDN environment can be used to detect and prevent security

attacks. However, the authors did not propose how the trusted IP-MAC bindings can be

obtained, and only tested the proposed control in a specific laboratory environment.

Another problem is the fact that every ARP Reply message should be forwarded to the

SDN controller to be analyzed and then delivered back to the network, also increasing

the network latency.

 Rojas et al (2014) aims to verify if the policies applied at the SDN controller are

imposed by the Openflow switches. The authors model a SDN environment with three

servers (laboratory, academic and SDN controller) and two workstations (one of

23

students and one for teacher), using CPN. At this CPN model was created three policies,

as follow:

• The student’s workstation can access the laboratory server;

• The teacher’s workstation can access the laboratory server;

• The teacher’s workstation can access the academic server.

 The authors used a tool called CPNTools to model the environment and the flow

rules mentioned above. After that, the authors used a code, written in Meta Language

(ML), to verify if there is at least one state at the CPN model which breaks the flow

rules created. Finally, the authors concluded that the SDN controller correctly enforces

the policies created in all Openflow switches, and that the CPN is a suitable tool to

validate security rules in a SDN environment. However, they do not model any security

attack or control, just the normal SDN operation.

 The proposed solutions, at traditional networks, analyzed by Tripathi and Mehtre

(2014) were not considered effective if compared to the proposed factors. The Rojas et

al (2014) research shows that CPN is a valuable tool to validate security policies applied

to a SDN environment. However, the solutions proposed by Cox et al (2016) and Sasan

and Salehi (2017), based on SDN environment, have been proved to be effective to

prevent the attack, but it increases the network latency and can be considered a single

point of failure, which is one of the factors analyzed by Tripathi and Mehtre (2014). It

should be very valuable a solution that can be considered effective by the Tripathi and

Mehtre (2014) criteria, using a SDN environment that cannot be considered a single

point of failure, and the CPN can be used to validate if the proposed control is effective

in all possible states.

4. MITM PREVENTION MODULE

 This paper proposes a security control to a SDN environment, which is applied

at every Openflow switch to detect any packet with forged data, and correct the MAC

address as the packet flow in the network. As depicted in Figure 2, paper achieves its

goal assuming the trusted information about the IP-MAC bindings will be collected by

an external application, as an asset management system, for example. This information

should be securely delivered to an application, installed in the SDN controller, called

MITM Prevention Module, which writes two flow rules per IP address, designed to

correct the data at the packet header, in all Openflow switches.

 The MITM Prevention Module receives trusted IPMAC address bindings from

an external application, and information about the machines connected to the network

(connected port, IP and MAC addresses) from an internal module, called Topology

Manager. With this two information, the MITM Prevention Module has all information

needed to create the two proposed flow rules.

24

Figure 2. Proposed Architecture

Source: Adapted from Project Floodlight (FLOODLIGHT, 2018)

 The first flow rule matches packets that have the correct binding of IP and MAC

addresses and delivery them to the correct destination port. The second flow rule

matches packets that have incorrect IPMAC bindings, updating them with the correct

MAC addresses, and only after that, the packets are then delivered to the correct

destination port. In that way, the first rule delivers the normal packets, and the second

rule correct and delivers the packets with forged data, preventing the MITM attack to

have success in intercepting packets. These rules are sent to the Flow Cache module that

distributes them to all Openflow switches that will deal with the traffic for one specific

machine.

 The proposed solution is validated by the formal modelling of the flow rules

inserted in a SDN environment composed by a client, a server and an attacker machine.

In that SDN environment, the normal operation and the MITM attack, with and without

the security control, were simulated.

4.1. MODEL DESCRIPTION

 This subsection presents the hierarchical CPN model that is used to analyze the

proposed security control. This CPN model has three levels: a top-level, which

represents the network topology; the second level, which details the client, the server,

the attacker machine and the switch; and the third level, which represents the details of

some switch components. The CPN model color set is presented at appendix A.

4.2. TOP-LEVEL CPN MODEL DESCRIPTION

 As depicted at Figure 3, this first CPN model represents a SDN topology,

composed by four components: a client, a server, an attacker machine and one

Openflow switch.

25

Figure 3. Network Topology (Top-level CPN Model)

Source: Author.

 All these components are represented by transitions. The places represent

the connection medium (network cables) between the machines and the switch. For

every machine there are two places, one for sending (names beginning with TX)

and another for receiving packets (names beginning with RX). At this model, there

is only one communication sequence, starting with the attacker machine, follow by

the client machine, and finally by the server machine. This sequence was defined

to simulate an attack scenario where the attacker launches the attack before the

client machine start its communication with a server. The “Enable C”, “Enable S”

and “Enable A” places are used to force this communication sequence. The

“Enable A” place has two marks that are transferred to the attacker machine at the

beginning of the simulation. The attacker machine sends its packets and when

finished, the marks are transferred to the “Enable C” place. The process is repeated

at the client machine, and then at the server machine. The arcs interconnect these

components and determine in which direction the packets flow at the model. Every

transition of this level is detailed at the second level, as follow.

4.2.1. SECOND LEVEL CPN MODEL DESCRIPTION

 The second level is composed by four CPN models, one for each transition

at the top-level model: client, server, attacker and switch. The first model of the

second level, depicted at Figure 4, represents the client machine connected to a

SDN network. This model is composed by three transitions (NextMsg, Receive

Datagram and Send Datagram), and six places (DTG Count, Source, ARP Table,

Transmit, Received and MsgBuffer). At this model, there are four special places

(represented by double circles), which represent the points of connection between

the second and the top-level CPN models. In this case, the RX-SW special places

connected to the top-level place called rx-swp1; the special plac tx-sw is connected

to the top-level place called tx-swp1; and the “Enable C” and “Enable S” special

places are connected to the places with the same name at the top-level model.

26

Figure 4. Client Machine (First Model – Second Level)

Source: Author.

 The “DTG Count” place implements a counter that is used to create sequential

number to numerate the packets sent and received by the client machine. The “Source”

place storages information (mark) about the client IP and MAC addresses, which will be

used to assemble packets that will be sent, and to check if the packet received by the

client machine was correctly delivered. The “ARP Table” place represents the client

local ARP table, and storages information about the IP-MAC bindings of all machines

connected to the network. The “Transmit” place will receive marks that represent the

client messages that will be sent to a remote machine at the network. The “Received”

place storages the data (marks) received from remote machines at the network that were

addressed to the client machine. The “MsgBuffer” place has the messages waiting to be

transmitted to a remote machine.

 The inscriptions at each arc define rules to determinate which data can be moved

by the arc and which variables should be used to transport the data by the arc. The

“Send Datagram” transition is used to assemble the packets that will be sent to the

network.

27

Figure 5. Server Machine (Second Model – Second Level)

Source: Author.

 This transition receives the packet number from the “DTG Count” place

(variable “n”), the source IP and MAC addresses from “Source” place (variables “Sip”

and ”Smac”), the data and the destination IP address from “Transmit” place (variables

“Dip” and “data”) and the destination MAC address from “ARP Table” place (variable

“Dmac”). The bidirectional arrow between “Source”, “ARP Table” places and the

“Send Datagram” transition indicates that the data is moved from the place to the

transition, and then returned to the place. The unidirectional arrows show that the data is

consumed from the place to the transition.

 The “Receive Datagram” transition receives the packet from the network (RX-

SW special place), the client IP and MAC addresses from “Source” place, and the

previous received messages from “Received” place. If the packet received is addressed

to the client machine, the transition concatenates the new message with the earlier

received messages from a specific IP address at the “Received” place, creates an

acknowledge data at “Transmit” place to inform the sender that the packet was correctly

received, and updates the “DTG Count” place to indicate that the next message can be

sent if the transition receives a packet to itself with an acknowledge data. The

28

“NextMsg” transition receives the message to be sent from the “MsgBuffer” place and

the marks from the “Enable C” special place (at the top-level CPN model), and then it

makes the message available at the “Transmit” place to be sent to its destination. The

goal of this transition is allowing the client machine to send its messages only when

there are marks at the “Enable C” special place, as described at the top-level CPN

model.

 The second model of the second level, depicted at Figure 5, represents a server

machine connected to a SDN network. This model is composed by the same transitions,

places and arcs that compose the client machine model. There are only three differences

between the client and the server CPN models. The first difference is at “Source” place

initial mark, which now has information about the server IP and MAC addresses (IP2

and MAC2). The second difference is the “MsgBuffer” place initial mark, which

storages different messages. The third difference is the absence of an arc between a top-

level place and the “Send Datagram” transition, which was used at the client machine

model to enable the transmission of the next machine messages. As the servers’ machine

is the last machine to communicate at the model, it is not necessary any integration

between this model and the top-level model.

 The third model of the second level, depicted at Figure 6, represents the attacker

machine connected to a SDN environment.

Figure 6. Attacker Machine (Third Model – Second Level)

Source: Author.

 This model is composed by the same transitions, places and arcs that compose

the client machine model. There are only five differences between the client and

29

attacker CPN models. The first difference is at “Source” place initial mark, which now

has information about the attacker IP and MAC addresses (IP3 and MAC3). The second

difference is the “MsgBuffer” place initial mark, which storages messages with different

payloads. The third difference is the existence of the “Intercepted” place, that is used to

storage all packets received by the attacker machine that are not addressed to itself. The

fourth difference is the existence of the “Retransmit” place, which is used to retransmit

the intercepted packets to its original destination. The fifth and last difference is the

existence of a new transition called “Send Fake Datagram” that is used to reassemble

the packet with the original destination IP and MAC addresses.

 The fourth model of the second level, depicted at Figure 7, is the Openflow

switch that has three ports, and interconnects the machines at the SDN environment.

This model is composed by six transitions (Receive SW P1, Transmit SW P1, Receive

SW P2, Transmit SW P2, Receive SW P3 and Transmit SW P3), and seven places (P1,

P2, P3, Warehouse, DTGLIST, PreAct, and RULE Action). At this model, there are two

special transitions (ChkRules and Actions) that will be detailed in the third level CPN

model. There is one special place for each transition (RX-SW or TX-SW) that are the

same ones described at the top-level CPN model.

Figure 7. Openflow Switch (Fourth Model – Second Level)

Source: Author.

 Each Openflow switch port has two transitions connected to it. One handles the

reception of the packets from the machines connected to the switch (Receive SW P1,

Receive SW P2 and Receive SW P3), and the other handles the transmission of the

packets to the machines connected to it (Transmit SW P1, Transmit SW P2 and

Transmit SW P3). When the switch receives a packet, it storages the packet at the

Warehouse place, and append the packet number at a list that is managed by the

“DTGLIST” place. The “ChkRules” special transition stores the rule table and is

responsible to match the correct rule to each packet. It reads the packet number list and

the packet header, compares the header fields with the flow rule table and defines which

actions the switch will apply to the packet. The packet and the matched rule number are

stored at the “PreAct” place, and a copy of the matched flow rule is stored at the “RULE

Action” place. The “Actions” special transition reads the information storaged at the

30

“PreAct” and “RULE Action” places, applies the actions defined by the flow rule and

delivers the packet at one of the switch port temporary buffers (P1, P2 or P3 places).

4.2.2. THIRD LEVEL CPN MODEL DESCRIPTION

 The third level is composed by two CPN models, one for the “ChkRules”

transition and another for the “Actions” transition, which were mentioned at the fourth

model of the second level. The first model of the third level, depicted at Figure 8,

represents the switchs “ChkRules” transition that is responsible for verify which flow

rule should be applied to a specific packet. This model is composed by five transitions

(Check Datagram, ChkDmac, ChkSmac, ChkDip and ChkSip) and six places (Rule

Count, Rule Table, PreDmac, PreSmac, PreDip, and PreSip).

Figure 8. ChkRules Transition (First Model – Third Level)

Source: Author

 The “Check Datagram” transition reads the packet number list at the DTGLIST

place (Fourth Model Second Level), extracts the number of the first packet at the list,

obtains the number of the first flow rule to be tested from the “Rule Count” place, and

forwards these information’s to the “PreDmac” place. The “PreDmac”, “PreSmac”,

“PreDip” and “PreSip” places are used by this model as a stage area, which are used to

store the flow rule number and the packet number, between each packet header field

validation.

31

 The “Rule Table” transition stores the flow rule table, and each flow rule entry is

composed by a priority number (higher numbers means higher priority), the packet

destination MAC address, the packet source MAC address, the packet destination IP

address, the packet source IP address, the actions destination MAC address, the actions

source MAC address, the actions destination IP address, the actions source IP address

and the Openflow switch port the packet should be delivered. The Destination MAC,

Source MAC, Destination IP and Source IP are used to match a rule to the packet, and

the last four packet header fields are used to store which field values should be replaced

by the Openflow switch at the packet. The model checks and acts only at four packet

header fields, which are at the scope of this work, but any packet header field can be

verified by the Openflow switch. The flow rule fields filled with the letter N means that

rule accepts any value for this field at the packet header.

 The first four rules implement the proposed control, which creates two flow

rules for each IP address at the network. The first rule pair treats all packets that have

the client machine as destination, and the second rule pair treats all packets that have the

server machine as destination. None of these rules treats the source of the packet. The

objective is to treat packets that have been assembled with forged data, by a machine

that has been target of an ARP Spoofing attack. This paper does not prevent the

occurrence of the ARP Spoofing attack, but the MITM attack that is the consequence of

the ARP Spoofing attack.

 For each rule pair, the first rule checks if the packets have the correct IP-MAC

binding, and delivers the packet at the correct Openflow switch port. The second rule

checks if there are any packets with the correct IP address but with an incorrect MAC

address, and replaces the original packet destination MAC address with the official and

trusted MAC address for the machine. As the Openflow switch stops the flow rule table

processing as the first rule matches with the packet header, the packets using the correct

IP-MAC binding are matched by the first rule and delivered to the correct switch port.

The packets with ARP spoofed are matched by the second rule (as it has the correct IP

address, but with the attacker MAC address), which correct the packet destination MAC

address with the trusted MAC address, and delivers the packet with the corrected data at

the correct destination switch port. The last three rules implement forwarding rules

based only on the destination MAC address, as occurs in traditional networks, or in a

SDN environment that operates simulating a traditional network.

 The “ChkDmac” transition receives the rule number and the packet number (arcs

in blue), a copy of the packet from the “Warehouse” special place (arcs in purple),

which were explained at the Fourth Model - Second Level, and a copy of the chosen

flow rule. If the packet destination MAC address matches with the flow rule destination

MAC address, or the flow rule destination MAC address is filled with the letter N, the

transition creates a mark at the “PreSmac” place with the rule and packet numbers.

Otherwise, the “ChkDmac” transition decrements the rule number and creates a mark at

the “PreDmac” place with a new rule number and the same packet number. The

“ChkSmac”, “ChkDip” and “ChkSip” transitions implements the same logic to the

packet source MAC address, destination IP address and source IP address respectively.

The “ChkSip” transition also creates a mark at the “Rule Count” place with the first

flow rule number, a mark with the matched rule number and the packet number at the

upper level “PreAct” place, and a copy of the matched rule at the upper level “Rule

Action” place.

32

 The second model at the third level, depicted at Figure 9, represents the switch’s

“Actions” transition that is responsible to modify the packet header as defined by the

flow rule, and to deliver the packet to the correct Openflow switch destination port. This

model is composed by five transitions (ActDmac, ActSmac, ActDip, ActSip and

Deliver) and four places (PosADM, PosASM, PosADI and PosASI).

Figure 9. Actions Transition (Second Model - Third Level)

Source: Author

 The “ActDmac” transition receives the rule and packet numbers from “PreAct”

place, the packet that was stored at the “Warehouse” place and a copy of the matched

flow rule. If the “aDmac” rule field is filled with the letter N, the transition forwards the

original packet to the “PosADM” place. Otherwise, the “aDmac” rule field value

overrides the packet destination MAC address, and the updated packet is sent to the

“PosADM” place. The “ActSmac”, “ActDip” and “ActSip” transitions implements the

same logic to the source MAC address, destination IP address and source IP address,

respectively.

 The “Deliver” transition reads “aPort” rule field and forwards the packet to the

Openflow switch port temporary buffers (P1, P2 or P3) at the Fourth Model - Second

Level. The “PosADM”, “PosASM”, “PosADI” and “PosASI” places are used as a stage

area between “ActDmac”, “ActSmac”, “ActDip”, “ActSip” and “Deliver” transitions.

33

5. VALIDATION AND VERIFICATION OF THE CPN MODEL

 This work uses the state space analysis to validate the CPN model and the

proposed solution. The state space analysis consists in creating a graph. Each graph

node is called a state, which is a combination of the CPN model marks and places. The

graph arcs represent the CPN model transitions between one state to another. With this

graph is possible to calculate the CPN properties, like the reachability that calculates if

there is an occurrence sequence from the initial CPN model marking (node) to a specific

marking (another node). With the calculation of the state space, it is possible to make

queries in ML to search the graph looking for states that satisfy specified conditions.

This work creates two functions, called PrivateCom and InterceptedCom whose codes

can be analyzed at Appendix B. Both functions search for states which satisfy all these

conditions:

• The “MsgBuffer” place, at Attacker Machine (Third Model - Second Level),

is empty;

• The “MsgBuffer” place, at Client Machine (First Model - Second Level), is

empty;

• The “MsgBuffer” place, at Server Machine (Second Model - Second Level),

is empty;

• The “Warehouse” place, at Openflow Switch (Fourth Model - Second

Level), is empty;

• The “RULE Action” place, at Openflow Switch (Fourth Model - Second

Level), is empty;

• The “Received” place, at Attacker Machine (Third Model - Second Level),

has the marks with the client and server messages;

• The “Received” place, at Client Machine (First Model - Second Level), has

the marks with the server and attacker messages; and

• The “Received” place, at Server Machine (Second Model - Second Level),

has the marks with the client and attacker messages.

 These conditions identify states in which the communications among the

machines has finished, and there are no packets inside the switch. The difference

between PrivateCom and InterceptedCom is that the first function checks if the

“Intercepted” place, at Attacker Machine (Third Model - Second Level) is empty, and

the second function checks if the “Intercepted” place has a copy of the marks that

represents the packets sent between the client and the server machines.

5.1. VALIDATION OF THE CPN MODEL CORRECTNESS (SDN only)

 The first validation scenario aims to verify if the model acts like a normal SDN

network, in which every machine communicates with each other without interception.

This scenario is validated making one change at the “Rule Count” initial mark at

ChkRules Transition (First Model - Third Level - Figure 8), from 98 to 94. This change

disables the proposed control (represented by rules from 95 to 98) and enables only the

rules that forward the packets using only the MAC address.

34

 After this change, the state spaces analysis is calculated, and the functions

PrivateCom and InterceptedCom are executed. The PrivateCom function results the

existence of 216 possible states that satisfy the conditions. The InterceptedCom function

does not result any possible state that satisfy the conditions. These results indicate that

the SDN model is correct, the communication occurs in a private way, and the attacker

machine is unable to intercept the communication between the client and the server.

5.2. VALIDATION OF THE MITM ATTACK IN THE CPN MODEL

(SDN+Attack)

 The second validation scenario aims to verify if it is possible to execute a

success MITM attack in a SDN environment. This scenario is validated making some

changes in initial marks of the previous scenario, modelling a situation in which the

client and server local ARP table has been spoofed, as follows:

• At the client machine model (Figure 4), the initial mark that binds IP2 to

MAC2 (server IP and MAC addresses) is changed to bind IP2 to MAC3

(server IP address and attacker MAC address);

• At the server machine model (Figure 5), the initial mark that binds IP1 to

MAC1 (client IP and MAC addresses) is changed to bind IP2 to MAC3

(server IP address and attacker MAC address).

 After the changes, both the state spaces analysis and the functions PrivateCom

and InterceptedCom are executed again. The PrivateCom function does not result any

possible state that satisfy the conditions. The InterceptedCom function results the

existence of 216 possible states that satisfy the conditions. These results indicate that a

SDN environment is susceptible to the MITM attack as the attacker machine could

intercept the packets sent between client and server.

5.3. VALIDATION OF THE PROPOSED SECURITY CONTROL IN THE CPN

MODEL, WITHOUT A MITM ATTACK (SDN+CTRL)

 The third validation scenario aims to verify if the proposed control alters the

SDN normal operation. This objective is achieved returning the client and server

machines to its initial state (without the spoofed local ARP table), and the proposed

control rules should be enabled again. The following changes are needed in initial marks

of the previous scenario:

• At the client machine model (Figure 4), the initial mark that binds IP2 to

MAC3 (server IP address and attacker MAC address) is changed to bind IP2

to MAC2 (server IP and MAC addresses);

• At the server machine model (Figure 5), the initial mark that binds IP2 to

MAC3 (server IP address and attacker MAC address) is changed to bind IP1

to MAC1 (client IP and MAC addresses);

• The initial mark at the “Rule Count” place (Figure 8) is changed from 94 to

98. This change enables the proposed control rules from 95 to 98.

35

 The execution of the state space analysis and the functions PrivateCom and

InterceptedCom bring the same results that were obtained at the first scenario (see

section 5.1). The PrivateCom returned 216 possible states and InterceptedCom does not

result any possible state. These results indicate that the proposed control has no effect

on the SDN normal operation.

5.4. VALIDATION OF THE PROPOSED SECURITY CONTROL IN THE CPN

MODEL, UNDER A MITM ATTACK (ATTACK + CONTROL)

 The fourth scenario aims to verify if the proposed control is effective to prevent

MITM attacks. This scenario is validated when the machines have its local ARP table

spoofed and the proposed control is kept enabled. It is done by making the following

changes at the previous scenario initial marks:

• At the client machine model (Figure 4), the initial mark that binds IP2 to

MAC2 (server IP and MAC addresses) is changed to bind IP2 to MAC3

(server IP address and attacker MAC address);

• At the server machine model (Figure 5), the initial mark that binds IP1 to

MAC1 (client IP and MAC addresses) is changed to bind IP2 to MAC3

(server IP address and attacker MAC address).

 After the changes, the state spaces analysis and the functions PrivateCom and

InterceptedCom are executed once again. The PrivateCom function results the existence

of 216 possible states that satisfy the conditions. The InterceptedCom function does not

result any possible state that satisfy the conditions. These results indicate the proposed

control is effective to prevent MITM attack as the communication occurs in a private

way, and the attacker machine is unable to intercept the communication between the

client and the server machines.

5.5. RESULTS

 As depicted at Figure 10, the state space analysis also provides information

about the total number of possible states in a CPN model, which represents all behaviors

of the model. The comparison of the number of states gives some insights about the

results. The comparison of scenarios shows:

• An increase of 44.904 states (67%), between the first and second scenarios,

as result of a MITM attack in a SDN environment without the proposed

control. These states represent the Attacker machine intercepting the packets

between Client and Server machines;

• A reduction of 11.172 states (9,98%) between the second and fourth

scenarios, which shows that the states representing the interception of the

data sent between Client and Server machines was eliminated;

• An increase of 1.696 states (1,71%) between scenarios three and four, as

results of a MITM attack in a SDN environment with the proposed control.

These states represent the proposed control treating the forged packets;

36

• An increase of 32.036 states, between the first and third scenarios, indicating

that the proposed control increased 47,79% the number of possible states in

a SDN environment;

• The comparison of the impact caused by the MITM in a SDN without

(44.904) and with (1.696) the proposed control shows 96,22% of reduction

at the MITM impact in a SDN environment.

Figure 10. Scenarios for State Space Analysis.

Source: Author

 It is possible to attest that the proposed control attends to the five factors,

proposed by Tripathi and Mehtre (2014), to consider a control a versatile solution to

MITM attacks. As the proposed solution does not analyzes ARP messages and prevent

MITM attack even when the machine has a spoofed local ARP table, it can be

considered resistant to flood of spoofed ARP messages (first factor). Even if the attacker

registers to itself all unused IP address, before the legitimate client joins to the network,

it will receive only packets addressed to it. So, it is resistant to the second factor. As the

proposed control does not requires any changes at the ARP protocol, it can be

considered resistant to third factor that says that the proposed solution should be

compatible with the existing network infrastructure. The fourth factor identify if the

proposed solution cannot be considered a single point of failure. It is not the case of the

proposed control, as the rules are distributed across all Openflow switches. Finally, as

the proposed control uses the IP address as a unique identity, it can be considered

resistant to the fifth factor that defines the proposed solution should allow more than one

IP address to each MAC address.

6. FINAL CONCLUSION

 This work has proposed a preventive control against MITM attack in a SDN

environment, even with machines that have its local ARP table spoofed. The SDN

environment, the MITM attack and the proposed control have been modeled using CPN.

The CPN parameterization allowed the creation of four scenarios, and two functions

37

were defined to check if the communication between client and server machines could

or couldnt be intercepted in all possible CPN model conditions. The functions proved

the communications occur in a private way at scenarios one, three and four. Only the

second scenario has the communication intercepted. These results show that the

proposed control is effective to prevent MITM attacks in a SDN environment.

 The total number of states calculated to each scenario, by the state space

analysis, was used to mensuration of the attack and control impact in a SDN

environment. The comparison of the scenarios demonstrated that:

• The proposed security control eliminated the interception states;

• The MITM attack impact was reduced in 96,22% by the proposed security

control;

• The proposed control increases the number of possible states in 47,79% on a

SDN environment; and

• The analysis of the proposed security control using the five evaluation

factors proposed by Tripathi and Mehtre (2014) shows the control is

resistant to all five factors and can be considered an effective control against

MITM attacks.

 The proposed control has the following limitations:

• The proposed control is effective against MITM attacks based on ARP

Spoofing;

• The proposed control does not prevent the ARP table poisoning;

• The CPN model does not represents the communication between the

controller and the switch;

• The proposed control is based only on SDN that uses the Openflow protocol.

So, considering another protocol, it is not possible to say about its

effectiveness; and

• The proposed control needs a trusted source of IPMAC bindings, and that

data is transmitted to the controller in a secure way.

 As future work, we can consider the proposed security control been used

to prevent types of attacks different than MITM, which would have others packet

header fields.

38

REFERENCES

ANAN, M., AL-FUQAHA, A., NASSER, N., MU, T.Y., and Bustam, H. (2016)

Empowering networking research and experimentation through software-defined

networking. Journal of Network and Computer Applications, 70, 140–155.

AROTE, P.; ARYA, K. V. (2015) Detection and prevention against arp poisoning attack

using modified icmp and voting. Computational Intelligence and Networks (CINE),

2015 International Conference on, pp. 136–141. IEEE.

BARBHUIYA, F. A., BISWAS, S., HUBBALLI, N., NANDI, S. (2011) A host based

des approach for detecting arp spoofing. Computational Intelligence in Cyber

Security (CICS), 2011 IEEE Symposium on, pp. 114–121. IEEE.

BRUSCHI, D., ORNAGHI, A., ROSTI, E. (2003) Sarp: a secure address resolution

protocol. Computer Security Applications Conference, 2003. Proceedings. 19th

Annual, pp. 66–74. IEEE.

COX, J. H., CLARK, R. J., OWEN, H. L. (2016) Leveraging sdn for arp security.

SoutheastCon, 2016, pp. 1–8. IEEE.

FLOODLIGHT, P. (2016). The controller.

FOUNDATION, O. N. (2015) Openflow Switch Specification Version 1.5.1.

FORCE, I. E. T. (2014). Forwarding and control element separation (forces).

JENSEN, K., KRISTENSEN, L. M.; WELLS, L. (2007) Coloured petri nets and cpn

tools for modelling and validation of concurrent systems. International Journal on

Software Tools for Technology Transfer, 9, 213–254.

KUMAR, S.; TAPASWI, S. (2012) A centralized detection and prevention technique

against arp poisoning. Cyber Security, Cyber Warfare and Digital Forensic

(CyberSec), 2012 International Conference on, pp. 259–264. IEEE.

LERES, C. (2006). Arpwatch tool:Arp spoofing detector.

LOOTAH, W., ENCK, W., McDaniel, P. (2007) Tarp: Ticket-based address resolution

protocol. Computer Networks, 51, 4322–4337.

MASOUDI, R.; GHAFFARI, A. (2016) Software defined networks: A survey. Journal

of Network and computer Applications, 67, 1–25.

PANDEY, P. (2013) Prevention of arp spoofing: A probe packet based technique.

Advance Computing Conference (IACC), 2013 IEEE 3rd International, pp. 147–153.

IEEE.

ROJAS, M. A. T., UEDA, E. T., BRITO, T. C. M. (2014) Modelling and verification of

security rules in an openflow environment with coloured petri nets. Information

Systems and Technologies (CISTI), 2014 9th Iberian Conference on, pp. 1–7. IEEE.

SASAN, Z.; SALEHI, M. (2017) Sdn-based defending against arp poisoning attack.

Journal of Advances in Computer Research, 8, 95–102.

39

TETERIN, I. (2003). Antidote.

TRIPATHI, N.; MEHTRE, B. (2014) Analysis of various arp poisoning mitigation

techniques: A comparison. Control, Instrumentation, Communication and

Computational Technologies (ICCICCT), 2014 International Conference on, pp.

125–132. IEEE.

APPENDIX A

 The Table 1 presents the CPN model color set, which defines the data type and

description of each variable.

Variable Color (Type) Description

pkt list DTG BUFFER Packet list at the Open flow switch

n and n2 INT (Integer) Packet number

rn INT (Integer) Data flow rule number at the Open flow switch

ip STRING IP address

mac STRING MAC address

Smac STRING Source MAC

Dmac STRING Destination MAC

Nmac STRING Correct victim MAC, stored by attacker

Sip STRING Source IP

Dip STRING Destination IP

data STRING Packet data

msg STRING Data received by a machine

mDmac STRING Match destination MAC address

aDmac STRING Destination MAC that will override the packet header field

mSmac STRING Match source MAC

aSmac STRING MAC that will override the packet header field

mDip STRING Match destination IP

aDip STRING Destination IP that will override the packet header field

mSip STRING Match source IP

aSip STRING
Source IP that will override the packet header field

aPort STRING
Open flow switch port number that will be used to deliver the

packet
Table 1. The CPN Model Color Set

Source: Author.

40

APPENDIX B

 The following two ML codes are used to scan all graph, generated by the state

space analysis, and count how many states satisfies the conditions described at section

5.

PrivateCom Code:

[language=C] fun PrivateCom k = ((Mark.attacker’MsgBuffer 1 k) == empty) and also

((Mark.client’MsgBuffer 1 k) == empty) and also ((Mark.server’MsgBuffer 1 k) ==

empty) and also ((Mark.Switch’Warehouse 1 k) == empty) and also

((Mark.Actions’RULEAction 1 k) == empty) and also ((Mark.attacker’Received 1 k) ==

1‘(102,”IP1”,”client to attacker”)++ 1‘(202,”IP2”,”server to attacker”)) and also

((Mark.client’Received 1 k) == 1‘(201,”IP2”,”server to client”)++

1‘(301,”IP3”,”attacker to client”)) and also ((Mark.server’Received 1 k) ==

1‘(101,”IP1”,”client to server”)++ 1‘(302,”IP3”,”attacker to server”)) and also

((Mark.attacker’Intercepted1k) ==empty); val statelist=

PredAllNodesPrivateCom;valstatelistsize=lengthstatelist;

InterceptedCom Code:

[language=C] fun InterceptedCom k = (Mark.attacker’MsgBuffer 1 k) == empty)

andalso ((Mark.client’MsgBuffer 1 k) == empty) andalso ((Mark.server’MsgBuffer 1 k)

== empty) andalso ((Mark.Switch’Warehouse 1 k) == empty) andalso

((Mark.Actions’RULEAction 1 k) == empty) andalso ((Mark.attacker’Received 1 k) ==

1‘(102,”IP1”,”client to attacker”)++ 1‘(202,”IP2”,”server to attacker”)) andalso

((Mark.client’Received 1 k) == 1‘(201,”IP2”,”server to client”)++

1‘(301,”IP3”,”attacker to client”)) and also((Mark.server’Received 1 k) ==

1‘(101,”IP1”,”client toserver”)++1‘(302,”IP3”,”attackertoserver”)) andalso

 ((Mark.attacker’Intercepted 1k)== 1‘(101,”MAC3”,”MAC1”,”IP2”,”IP1”,”client

 to server”)++ 1‘(101,”MAC3”,”MAC2”,”IP1”,”IP2”,”ACK”)++

1‘(201,”MAC3”,”MAC1”,”IP2”,”IP1”,”ACK”)++

1‘(201,”MAC3”,”MAC2”,”IP1”,”IP2”,”server to client”));valstatelist=

PredAllNodesInterceptedCom;valstatelistsize= lengthstatelist;[]

