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Resumo 

Metais industriais levaram o preço das commodities a um patamar mais elevado em 2017, com alta de 28%. 
Entre os metais industriais, alumínio destaca-se por ser o segundo metal mais usado após o aço. Como o 
alumínio é um insumo fundamental para uma variedade de aplicações industriais, grandes oscilações nos 
preços podem ter forte impacto nos termos de troca. Melhorar acuracidade das previsões de preços do 
alumínio é crítico para agentes de políticas econômicas, produtores, consumidores industriais e 
investidores. Este trabalho propõe uma metodologia inédita para obtenção de uma combinação ótima de 
modelos de previsão de preços de alumínio utilizando Combinações de Previsões, Model Confidence Set e 
Sarimax. Os resultados mostraram que o melhor modelo foi a combinação com Sarimax e Sarima. Conclui-se 
também que estoques e preços de alumínio de 3 meses são variáveis-chave para melhorar a acuracidade 
das previsões. 
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Abstract 

Industrial metals led the commodity space higher 
in 2017, closing the year up 28%. Among 
industrial metals, aluminum is the second most 
used metal in the world after steel. As aluminum 
is a key input for a variety of industrial 
applications, large swings in prices can have a 
major impact on the terms of trade. Therefore, 
improve forecasts on aluminum prices is of critical 
importance to economic policy decision makers, 
producers, industry consumers and investors. This 
work proposes a novel approach to obtain an 
optimal combination for aluminum price 
forecasting by utilizing Forecast Combination, 
Model Confidence Set and Sarimax. Five individual 
models were estimated The results showed that 
the best model was the forecast combination 
including Sarimax and Sarima models. The work 
indicated that aluminum inventories and 3-month 
aluminum forward prices improved price forecast 
accuracy, as key covariates to improve policy 
decisions. 

 

Keywords: Commodity prices; forecast 

combination; model confidence set  

 

 

 

INTRODUÇÃO 
 

 

 
Commodity markets benefited from strong 

economic activity, supply disruptions, and 

increased geopolitical risk in 2017, helping to 

push commodity investor to multi-year highs. 

Industrial metals, such as aluminum and zinc, led 

the commodity space higher in 2017, closing the 

year up 28%, while precious metals increased 

10%. The laggards during 2017 included soft 

commodities (-16%), such as edible oil, and 

agriculture (-12%).  

Among industrial metals, aluminum stands out as 

it is the second most used metal after steel for 

modern societies. It has the widest diversity of 

end-use applications compared to any other 

metal. Semi-finished steel and refined copper, for 

example, are both heavily reliant on the 

construction sector. The diversity of aluminum 

applications lends itself to a stronger demand 

performance once investment demand falls, 

especially in emerging markets. 

Recent years have witnessed a significant 

increase of aluminum use in transportation, 

building, packaging, and electrical engineering 

due to its versatile properties. Life cycle results 

show that, in automotive applications, each 

kilogram of aluminum replacing mild steel, cast 

iron or high strength steel saves between 13 to 20 

kg of greenhouse gas emissions (Bertram, 2009). 

In 2010, about 30% of aluminum used globally 

was used in transportation. Given its infinite 

recycling capacity, 75% of all aluminum ever 

produced is currently still in productive use.  

Aluminum is the most heavily traded nonferrous 

metal on the London Metals Exchange (LME), that 

sets its spot and futures prices. The LME is the 

largest pure commodity exchange in Europe and 

the world’s tenth largest futures exchange. The 

spot price is highly volatile, with the standard 

deviation of annual differences in the logarithm 

of the price equal to approximately 0.28 over the 

last three decades (Baldursson, 1999).   

Several studies were developed for commodity 

price forecasting, including approaches for 

projecting both the level as well as structural 

price breaks (Leuthold et al., 1970; Driehuis, 

1976). Such approaches were carried out by the 

World Bank, as described by Duncan (1984) and 

Labys and Pollack (1984). Kouassi, Labys and 

Colyer (1998) showed how univariate models can 

be applied to commodities. Labys and Kouassi 

(2004) developed structural models for short and 

medium-term forecasts by identifying cycles and 

structural breaks. Several authors produced 
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works using time series techniques for forecasting 

cycles, like Harvey and Jaeger (1993) and Mills 

(2003).  

Since the pioneering work of Bates and Granger 

(1969) on forecast combinations, different studies 

have shown that combinating forecasts provide 

results that are superior to those of individual 

models, including those by Newbold and Granger 

(1974), Makridakis and Winkler (1983), Hendry 

and Clements (2002), Stock and Watson (2001, 

2004), Pesaran and Timmermann (2005) and 

Issler and Lima (2009).  

This work seeks to improve aluminum price 

forecasting by utilizing the Model Confidence Set 

(Hansen, Lunde and Nason, 2011) for selecting 

the set of dominat forecast combination models 

over individual models. Individual model 

estimations were based on different SARIMAX 

and structural models. For SARIMAX estimations, 

30 independent variables and 37 transformations 

for each variable were assessed, including weak 

exogeneity and Granger causality tests, leading to 

four selected co-variates, namely Brent crude oil 

price, non-ferrous metals index, 3-month 

aluminum forward price and world aluminum 

inventories. The sample used for adjusting the 

parameters of each individual model was a 36-

month rolling window. 

Out-of-samples forecasts were based on 12-

month ahead time horizon for each rolling 

window. Forecast combinations were performed 

using seven approaches to determine weights for 

individual models, namely (i) simple average; (ii) 

ordinary least squares; (iii) weighted mean, based 

on the inverse of the root mean square error; (iv) 

weighted mean based on the Akaike information 

criterion; (v) minimization of the sum of the 

squares of the residuals, with the restriction that 

the sum of the weights is 1; (vi) minimization of 

the sum of the sum of the squares of the 

residuals, with the restriction that the sum of the 

weights is 1 and each weight is not negative; (vii) 

minimization of the sum of the sum of the 

squares of the residuals, with the restriction that 

the sum of the weights is not negative. 

The results showed that the best model was the 

forecast combination including SARIMAX and 

SARIMA models, adjusted by ordinary least 

squares. The work also indicated that world 

aluminum inventories and 3-month aluminum 

forward prices, as explanatory variables in the 

SARIMAX model, improved aluminum price 

forecast accuracy. Inventories and forward prices 

were more relevant to improve model 

predictability for the latest 36-month out-of-

sample forecasts, compared to 48 and 60-month 

out-of-sample forecasts. 

This paper is structured as follows: after this 

introductory section, the second topic deals with 

the literature review, including forecast 

combination and the Model Confidence Set. The 

third section presents data treatment and 

independent variables for SARIMAX models. The 

fourth section provides the results, including 

individual models, forecast combinations and 

comparisons of the individual and combined 

models. The fifth section concludes by focusing 

on work’s contributions, limitations and 

suggesting future studies. 

 

FORECAST COMBINATION 
 

 

LITERATURE REVIEW 

The main argument favoring combining forecasts 

are: (i) the true data generating process is 

unknown. Even the most complicated model is 

likely to be misspecified and can, at best, provide 

a reasonable local approximation. It is highly 

unlikely that a single model will dominate 

uniformly over time; (ii) the best model may 

change over time in a way that can be difficult to 
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track on the basis of past forecasting 

performance Combining forecasts across different 

models may be viewed as a way to make the 

forecast more robust against misspecification 

biases and measurement errors in the data set; 

(iii) it is possible that diversification gains from 

combining across a set of forecasting models will 

dominate the strategy of only using a single 

forecasting model. 

The first theoretical approach for combining 

forecasts was developed by Bates and Granger 

(1969), based on the concept of the 

diversification gains of a portfolio. The model 

assumes that the error variances of two forecasts, 

𝜎1  and 𝜎2 , are constant over time and that 

neither forecast is biased. The problem lies in 

determining the weights of the individual 

forecasts that generate a combined model that 

minimizes combination variance.  

The concept used by Bates and Granger (1969) 

was reinforced by Nelson (1972), through a 

relatively independent development, with 

application in the North American economy. 

Newbold and Granger (1974) maintained all the 

suppositions and combination methods of Bates 

and Granger (1969), and increased the number of 

individual forecasts, based on ARIMA, Holt-

Winters and stepwise autoregression models. 

Newbold and Granger (1974) concluded that the 

predictive performance of the combination of the 

three models was superior to that of the 

individual models. Makridakis and Winkler (1983) 

analyzed the accuracy of forecast combinations 

using 5 weighted mean methods, based on 10 

individual models. The two methods that were 

most accurate were weighting by way of the 

inverse of the sum of squared errors. The second 

was based on the exponential smoothing of the 

weights obtained in the first method. The authors 

emphasized that the accuracy of the combination 

depends on how different the individual models 

are, but the performance of the combined 

projection reaches saturation point with four or 

five individual forecasts.  

A different method was proposed by Engle, 

Granger and Kraft (1984). In this work, the 

traditional weight methods were used in the 

combinations of two inflation forecasts, based on 

error variances and covariances, but the variances 

developed were modeled conditional upon past 

values, using the ARCH method. Despite being 

potentially useful, this method proved to be more 

complex and less attractive than the usual 

combination techniques for minimizing errors. 

Granger and Ramanathan (1984) stressed that 

conventional models of linear forecast 

combination could be viewed as a structured 

form of regression. They concluded that the linear 

combination method is equivalent to the ordinary 

least squares method, assuming the combined 

forecast as a dependent variable and the 

individual forecasts as independent variables.  

Granger and Newbold (1986) argued that point 

forecasts should be combined in a linear way, 

using some mechanism for estimating the 

weights, which are not necessarily positive or 

normalized (in other words, the sum of the 

weights is 1), with the objective of minimizing the 

variance of the residuals. 

Christoffersen and Diebold (1997) investigated 

the case in which the bias is proportional to the 

conditional variance of the dependent variable. 

Assuming the forecasts to be similarly volatile, the 

authors argued that, if a loss function is more 

symmetrical than those used in constructing 

individual forecasts, it is possible to obtain a 

combination with a greater predictive 

performance than individual forecasts. 

Stock and Watson (2001) found evidence for the 

use of forecast combinations, particularly by the 

mean and median and weighted by the inverse of 
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the mean squared error, with dominance of the 

combination for forecast time horizons of one, six 

and twelve months.Hendry and Clements (2002) 

argued that forecast combinations can produce 

favorable empirical results because they provide 

a type of insurance against externalities and 

structural breaks.  

Subsequent works dealt with various topics, like 

those of Chan et al. (2004), on the use of variable 

weights; Stock and Watson (2004), on the fact 

that complex combinations are not always more 

accurate than combinations using the average; 

Eliott and Timmermann (2005), relative to the use 

of regime change models; Liang, Lee and Shao 

(2006), with regard to linear combination models; 

Fan and Deng (2007), on using forecast errors for 

constructing variable weights; Kim (2008), on 

generalized autoregression models; and Smith & 

Wallis (2009), on the error of finite samples in 

estimating the combined weight.  

Issler and Lima (2009) proposed a new approach 

for forecast combinations, using bias correction, 

which proved potentially superior to other 

techniques in an asymptotic context. Kolassa 

(2011) emphasized the construction of weights, 

based on the Akaike information criterion (AIC). 

Bruggemman and Luktepohl (2013) showed that 

the combined forecast, based on minimizing the 

mean squared error, was more accurate when 

using aggregate GDP and monetary base data of 

the United States than when using disaggregated 

data. Hsiao and Wan (2014) compared 

combinations using AIC weighting, regression, the 

Bayesian method and the minimization of 

squared errors. Recent topics and topics for 

future research deal with aspects such as 

probability density combinations, varying weights 

over time and combinations with asymmetric loss 

functions.  

 

 

FORECAST COMBINATION MODEL  

Given a time series 𝑦𝑡  and a set of M forecasting 

models denoted 𝐹𝑖(), 𝑖 = 1, … 𝑀,  with possible 

inputs, the following relationship is presumed for 

each model i: 

 

𝑦𝑡 =  𝐹𝑖(𝑌𝑡−1) +  휀𝑖,𝑡 

where 𝑌𝑡−1  denotes a vector of time series 

observations up to time t-1 and 휀𝑖,𝑡  are IID 

distrurbances with respect to t, assumed 

𝐸[휀𝑖,𝑡] = 0. Independently, each model 𝐹𝑖() is fit 

to produce a fitted forecast model that is denoted 

by �̂�𝑖(). Consider the following notation for the 

results of �̂�𝑖(): 

 

�̂�𝑖,𝑡 denotes the forecast for fitted model  �̂�𝑖() at 

time t; 

�̂�𝑖,𝑡 =  𝑦𝑡 −  �̂�𝑖,𝑡 denotes the prediction error for 

fitted model  �̂�𝑖() at time t 

�̂�𝑖,𝑡
2 = 𝑉𝑎𝑟(�̂�𝑖,𝑡)  denotes the prediction error 

variance for fitted model  �̂�𝑖() at time t 

 

The combined forecast at time t, denoted by �̂�𝑐,𝑡, 

uses combination weights, �̂�𝑖 , associated with 

predictions for each fitted model �̂�𝑖() at time t, 

denoted by �̂�𝑖,𝑡, as follows: 

 

�̂�𝑐,𝑡 = ∑ �̂�𝑖
𝑀
𝑖=1 �̂�𝑖,𝑡 

 

The combined forecast prediction error and 

variance are generally defined by: 

 

�̂�𝑐,𝑡 =  𝑦𝑡 −  �̂�𝑐,𝑡 
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𝑉𝑎𝑟(�̂�𝑐,𝑡) =  𝑉𝑎𝑟(𝑦𝑡 −  �̂�𝑐,𝑡 ) = 𝑉𝑎𝑟(𝑦𝑡(1 −

 ∑ �̂�𝑖
𝑀
𝑖=1 ) + ∑ �̂�𝑖

𝑀
𝑖=1 �̂�𝑖,𝑡) 

 
When we assume or impose that the constraint 

∑ �̂�𝑖
𝑀
𝑖=1 = 1, simplification resuts in: 

 

𝑉𝑎𝑟(�̂�𝑐,𝑡) =  ∑ �̂�𝑖

𝑀

𝑖=1

�̂�𝑖,𝑡 

=  �̂�𝑡
′𝛴�̂�𝑡 

 

where  �̂�𝑡 denotes the fitted weight vector M x 1 

and 𝛴 = 𝑉𝑎𝑟(𝐸𝑡) , with 𝐸𝑡 = (�̂�1,𝑡 , �̂�2,𝑡,…,�̂�𝑀,𝑡
)′ 

denotes the ensemble prediction error vector at 

time t. 

 

Alternatively, this can be expressed as: 

 

𝑉𝑎𝑟(�̂�𝑐,𝑡) =  ∑ �̂�𝑖
2𝑉𝑎𝑟(�̂�𝑖,𝑡)

𝑀

𝑖=1

+ 2 ∑ �̂�𝑖�̂�𝑗𝐶𝑜𝑣(�̂�𝑖,𝑡

𝑀

𝑗<𝑖

, �̂�𝑗,𝑡) 

  =  ∑ �̂�𝑖
2�̂�𝑖,𝑡

2

𝑀

𝑖=1

+ 2 ∑ �̂�𝑖�̂�𝑗�̂�𝑖,𝑗,𝑡𝜎𝑖,𝑡

𝑀

𝑗<𝑖

𝜎𝑗,𝑡 

 

If the prediction errors for the indiividual 

forecasts are not correlated at time t, then: 

 

𝛴 = 𝑑𝑖𝑎𝑔(�̂�𝑖,𝑡
2 ) 

 

 and the combined forecast prediction 

error variance and standard errors are: 

 

𝑉𝑎𝑟(�̂�𝑐,𝑡) =  ∑ �̂�𝑖
2�̂�𝑖,𝑡

2

𝑀

𝑖=1

 

 

𝜎𝑐,𝑡 =  √∑ �̂�𝑖
2�̂�𝑖,𝑡

2

𝑀

𝑖=1

 

 

 

Forecast weights �̂�𝑖, 𝑖 = 1, … , 𝑀,  of M individual 

models can be determined using the following 

methods: 

Simple combinations, in three categories, as per 

Clark and McCracken (2006): simple mean; 

median; trimmed mean. 

Weights defined by the root mean squared error; 

Weights corrected by the Akaike information 

criterion; 

Weights determined by the ordinary least squares 

method; 

Weights determined by the restricted least 

squares criterion, that is, non-negative least 

squares; equally restricted least squares; equally 

restricted and non-negative least squares. 

 

Simple Combinations  

Assuming simple mean, the estimated weights for 

individual forecasts are given by: 

 

�̂�𝑖 = 
1

𝑀
, ∀𝑖 ∈ �̂�𝑖()    

     

 

The combined forecast can also utilize the sample 

median as the estimated weight: 
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�̂�𝑐,𝑡 = median {�̂�𝑖()}    

   

 
Using the trimmed mean, the weights of the 

maximum and minimum forecasts are equalized 

to zero. For the other models, the weight: 

 

�̂�𝑖 = 
1

𝑀−2
     

     

 

is attributed, and the combined forecast is given 

by: 

�̂�𝑐,𝑡 =  
1

𝑀−2
∑ �̂�𝑖,𝑡

𝑀−2
𝑖=1     

     

 

Among three simple combination methods above, 

the simple mean is the most representative 

measure of the central trend if the forecasts 

belong to the same probability distribution; if not, 

the median or trimmed mean can supply the 

most suitable combined forecast. 

 

The Root Mean Squared Error Method 

This method uses the inverse of the mean 

squared error (MSE) of the series of forecast 

errors of each model, in relation to the sum of the 

inverse of the RMSE of all the models, as the 

weight of each individual forecast. Therefore, the 

smaller the RMSE, the smaller the weight 

associated with forecast �̂�𝑖,𝑡  of the 𝐹𝑖() model, in 

time t, where i ={1, ..., M}. 

 

Therefore, the estimated weight for forecast �̂�𝑖,𝑡 

of model 𝐹𝑖() will be: 

 

�̂�𝑖 = 
1 RMSE𝑖⁄

𝑊
  ,     where W=∑

1

𝑅𝑀𝑆𝐸𝑖

𝑀
𝑖=1   

      

  

      

       

Akaike Information Criterion Method (AIC) 

This method uses the Akaike Information 

Criterion (AIC) associated with the series of 

forecast errors of each model as the weight of 

each individual forecast.  

Let the AIC of model 𝐹𝑖() be given by: AICi = 

AIC(�̂�𝑖,𝑡−𝑗; 𝑃𝑖), �̂�𝑖,𝑡−𝑗  is the forecast error seres of 

the adjusted model �̂�𝑖() at t, for h steps ahead, 

j={h-1, ...,0} and 𝑃𝑖  is the number of parameters 

of the model. Assuming h=1, AICi = AIC(�̂�𝑖,𝑡; 𝑃𝑖). 

Let the smaller AICi be denoted by AICmin and it 

is defined as:  

 

∆𝑖=  𝐴𝐼𝐶𝑖 −  𝐴𝐼𝐶𝑚𝑖𝑛    

     

 

The estimated weight for the forecast �̂�𝑖,𝑡  of 

model 𝐹𝑖() will be: 

 

�̂�𝑖 = 
exp (−

1

2
 𝜆∆𝑖)

𝑊
  ,    

     

Where W = 𝑀 ∑ [exp (−
1

2
 𝜆∆𝑖)]𝑀

𝑖=1  e 0 ≤ λ 

      

 

When 0 ≤ λ ≤ 1, the resulting weight reflects a 

value between the weight obtained by the simple 

mean (when λ = 0) and the usual weight by the 

AIC (when  λ = 1). When λ is raised to 10, for 

example, the method tends to attribute a greater 

weight to the model with the smaller AIC. The 
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trend of selecting the best model is frequently 

observed when λ = 1, unless other forecasts have 

AIC that are relatively close to AICmin. The 

combined forecast at t will be given by: 

�̂�𝑐,𝑡 =  ∑
exp (−

1

2
 𝜆∆𝑖)

𝑊
 𝑀

𝑖=1  �̂�𝑖,𝑡    

     

 

Ordinary Least Squares Method (OLS) 

The weights are estimated by way of the OLS 

regression of T observed values of the dependent 

variable 𝑦𝑡  on M individual forecasts for each 

instant j of estimation period T, where j = {1, 2, 

...T}. In the case of forecasting h steps ahead, we 

have t = T + h, where t is the instant of time of the 

last forecast. The general expression of OLS is 

given by: 

 
𝑦𝑡  = 𝑤0 +  𝑤1�̂�1,𝑡 +  𝑤2�̂�2,𝑡 + ⋯ +  𝑤𝑀�̂�𝑀,𝑡 +  𝜖𝑡 ,  

where t ={1, 2, ..., T} 

 
The estimated weights �̂�𝑖 are given by: 

 

�̂�𝑖 = ∑ (𝑇
𝑡=1  �̂�′𝑡  �̂�𝑡)-1 ∑ (𝑇−1

𝑡=1  �̂�′𝑡  𝑦𝑡), where i={1, ..., 

M}    

 

The combined forecast at t will be given by: 

 

�̂�𝑐,𝑡 = ∑ �̂�𝑖
𝑀
𝑖=1 �̂�𝑖,𝑡    

    

 

According to Granger & Ramanathan (1984), 

three versions of the OLS method can be 

considered: 

 

𝑦𝑡 = ∑ �̂�𝑖
𝑀
𝑖=1 �̂�𝑖,𝑡 +  𝜖𝑖,𝑡, t.q ∑ �̂�𝑖

𝑀
𝑖=1 = 1  

   

𝑦𝑡 = 𝑐 +  ∑ �̂�𝑖
𝑀
𝑖=1 �̂�𝑖,𝑡 +  𝜖𝑖,𝑡, t.q. ∑ �̂�𝑖

𝑀
𝑖=1 = 1 

  

𝑦𝑡 = 𝑐 +  ∑ �̂�𝑖
𝑀
𝑖=1 �̂�𝑖,𝑡 +  𝜖𝑖,𝑡   

   

 

The first equation is a restricted regression, 

where the sum of the weights must add the unit 

and the individual forecasts have no bias in order 

to ensure that the combination of forecasts is also 

not biased. The second equation is a variation of 

the first, where the individual forecasts can have 

a bias, which is corrected by the introduction of 

the constant c. The third equation is a 

generalization of the two previous ones, where 

the sum of the weights is not necessarily the unit. 

The third general version of the OLS method was 

one of the methods used for the combined 

forecast of aluminum prices. 

 

Restricted Least Squares Method  

The three methods of this category are 

formulated as problems of least squares subject 

to restrictions and solved by way of the 

optimization process. The three methods 

minimize the objective function: 

 

z = ∑ (𝑇
𝑡=1  𝑦𝑡  – ∑ �̂�𝑖�̂�𝑖,𝑡

𝑀
𝑖=1 )2   

    

 

𝑦𝑡  is the observed value; 

�̂�𝑖 is the weight for model i; 

�̂�𝑖,𝑡 is the estimated value of the model at instant 

t. 



IMPROVING ALUMINUM PRICE PREDICTABILITY FROM FORECAST COMBINATIONS,  
MODEL CONFIDENCE SETS AND SARIMAX AND FORECAST COMBINATION 

 

108 FACEF Pesquisa: Desenvolvimento e Gestão, v.23, n.1 - jan/fev/mar/abr 2020 

 

Depending on the restrictions, there are three 

methods: 

Non-negative least squares, which impose the 

restriction: �̂�𝑖  ≥ 0, 𝑖 =  1, …, M  

Equally restricted least squares, which impose the 

restriction:  

               ∑ �̂�𝑖
𝑀
𝑖=1 = 1, 𝑖 =  1, … , 𝑀  

    

Equally restricted and non-negative least squares, 

which impose the restriction: 

                           ∑ �̂�𝑖
𝑀
𝑖=1 = 1, �̂�𝑖  ≥ 0, 𝑖 =

 1, … , 𝑀      

 

INDIVIDUAL MODEL ESTIMATION 
 

 

Three approaches were used for estimating 

individual models to arrive at forecast 

combinations, namely: SARIMA, SARIMAX and 

structural modeling. Since SARIMA can be viewed 

as a particular case of SARIMAX, only the later 

was included in this section. 

 

SARIMAX 

SARIMAX can be expressed by a SARIMA model 

with exogenous variables, according to (2.2), in 

which Xt represents the stationary series, 

including an autoregressive seasonal component 

∑ jXt−j
P
j=1  of order P and seasonal period s and 

a moving average seasonal component 

∑ θkZt−k
Q
k=1  of order Q and seasonal period s. 

According to Stoffer and Shumway (2006), the 

general form of SARIMAX is expressed by:  

 

Xt =  Ut +  ∑ ∅jXt−j
p
j=1  + ∑ jXt−j

P
j=1 + ∑ θkZt−k

𝑞
𝑘=1 + ∑ kZt−k

Q
k=1 +  Zt       

where: 

 

: is the k x r vector of the coefficients of the 

exogenous variables; 

Ut: is the r x 1 vector of the exogenous variables 

for representing current and past values. 

 
3.2 Structural model 
Formally proposed by Harvey (1989), the 

structural model models a univariate series as a 

function of its non-observable components: 

trend; seasonality; and cycle following a linear 

approach. The structural denomination arises 

from the fact of looking for a model by way of 

components that clearly interpret the reality. The 

generalized additive linear model is expressed by: 

 

𝐗𝐭 =  𝝁𝐭 +  𝜸𝐭 + 𝝎𝐭 + 𝐙𝐭,      

    

where 𝜇t, 𝛾t, 𝜔t are the stochastic components of 

trend, seasonality and cycle, and Zt is white noise, 

as described in Section 2.2.1. The 𝜇t , 𝛾t , 𝜔t 

components follow the formation laws shown 

below. The parameters to be estimated are the 

𝜎
2, 𝜎

2, 𝜎
2, 𝜎

2, 𝜎
2  variances. The seasonal 

component generally requires (s-1) state 

equations, where s is the seasonal period; in the 

case below, it was considered that s = 4.  

 

Trend 

𝜇t =  𝜇t−1 +  𝛽t + t , t ~ 𝑁𝐼 (0, 𝜎
2)  

   

𝛽t =  𝛽t−1  + 
t
, 

t
 ~ 𝑁𝐼 (0, 𝜎

2)   

   

Seasonality 

𝛾1t =  −𝛾1t−1 −  𝛾2t −  𝛾3t  + 
t

, 
t
 ~ 𝑁𝐼 (0, 𝜎

2 )

    

𝛾2t =  𝛾2t−1      
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𝛾3t =  𝛾3t−1      

     

Cycle 

𝜔t =  tt
, 

t
 ~ 𝑁𝐼 (0, 𝜎

2)   

    


t

=  
t−1

 + 
t
, 

t
 ~ 𝑁𝐼 (0, 𝜎

2)  

 

 

THE MODEL CONFIDENCE SET 

Unlike conventional models for model selection, 

the Model Confidence Set (MCS), as proposed by 

Hansen, Lunde & Nason (2011), can make 

multiple comparisons of models, based on a given 

descriptive level. This fact enables a set of models 

to be selected that gives comparable forecasting 

accuracy at a given descriptive level, as defined by 

the MCS. 

The objective of the Model Confidence Set (MCS) 

is to determine the set of models 𝑀∗ , which 

contains the best model(s) from a collection of 

models 𝑀0, in which the concept of “best” is 

defined on the basis of a criterion that is 

associated with the forecast performance. MCS 

estimates a set 𝑀∗̂, which is the set that contains 

the best models for a given descriptive level. 

An important contribution of MCS is that this 

approach recognizes data limitations. Data with 

the same information capacity result in an 𝑀∗̂ 

that contains just one model. Data with less 

information capacity result in a set of models with 

a forecast performance that is comparable to a 

given descriptive level of the MCS. Therefore, the 

MCS differs from conventional model selection 

methods, which determine just one model as 

being the best among all the adjusted models, 

based on only one criterion, regardless of the 

nature of the data. 

The selection method using the MCS is based on a 

𝛿𝑀 equivalence test and an 𝑒𝑀 elimination rule. 

The equivalence test is applied to the set, 𝑀 = 

𝑀0. If 𝛿𝑀 is rejected then there is evidence that 

the models do not have the same predictive 

power and 𝑒𝑀  is used to eliminate the low 

performance forecast models. This procedure is 

repeated until 𝛿𝑀 is accepted and 𝑀∗̂ is defined 

for a set of the best models. Using a descriptive 

level 𝛼 in all the tests, the method ensures that 

𝑙𝑖𝑚𝑛→ ∞ ( 𝑀∗  ∁  𝑀∗̂
1−∝ ) ≥ 1 −  𝛼.  When 

𝑀∗̂ contains just one model, there is a strong 

case, in which 𝑙𝑖𝑚𝑛→ ∞ (𝑀
∗ = 𝑀∗̂

1−∝) = 1. 

The MCS also generates descriptive levels for 

each compared model. For a given model i ∈  𝑀0, 

descriptive level 𝑝�̂� is the threshold for which i ∈

 𝑀∗̂
1−∝ , if, and only if, 𝑝�̂�  > 𝛼. Therefore, it is 

improbable that a model with a low descriptive 

level will be found among the best in terms of 

forecast accuracy. 

The algorithm of the MCS is based on the 

following steps: (i) initially, make M = 𝑀0; (ii) test 

the hypothesis 𝐻0,𝑀 using 𝛿𝑀 at descriptive level 

𝛼. ; (iii) if 𝐻0,𝑀 is accepted, then  𝑀∗̂
1−∝ = M is 

defined. If not, use 𝑒𝑀  to eliminate the low 

performing model and repeat the routine.  
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DATA TREATMENT 
 

 

ALUMINUM CASH PRICE SERIES 

The original data set comprises a monthly 

aluminum cash price series at nominal values, 

ranging from January 1999 to September 2014, 

obtained from the London Metal Exchange (LME). 

In order to eliminate the inflation effect, the 

original series (CASH) was deflated using the US 

Consumer Price Index (CPI), due to the relevance 

of the North American market within the global 

context and over the period analyzed, thus 

obtaining the CASHR series. Figure 1 shows the 

CASH and CASHR series at constant 2013 values. 

It was utilized the log return of the original series 

to make it stationary.  

SAMPLES AND EXPLANATORY VARIABLES 

The entire sample, from January 1999 to 

September 2014, was used for selecting the 

individual models. Each individual model was 

subsequently adjusted, taking a rolling window of 

36 months as the estimation period. 

The sample used for adjusting the parameters of 

each individual model was a 36-month rolling 

window, considering that the last three years 

constitute a relevant period for the prospects of 

the aluminum industry over the subsequent year. 

Figure 8 illustrates the selection of samples for 

adjusting the individual models. The first sample 

was from January 1999 to December 2001. The 

second sample was from February 1999 to 

 

 

 
Figure 1 - Aluminum cash price series at nominal values deflated by the CPI (US$/t) 

 

Figure 2 - Transformed Series of the Return on the Price of Aluminum 
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January 2002. The final sample (the most recent, 

which was number 142) was from October 2010 

to September 2013. Thus, 142 samples were used 

for adjusting each individual model. 

For each of the 142 samples, 9 model 

combinations were used. For example, 9 

combined models were adjusted for the first 

sample, from January 1999 to December 2001. 

Finally, 9 combined models were used for the 

final sample, from October 2010 to September 

2013. For each of the individual and combined 

model adjustments, the 12-month ahead 

aluminum price forecast was taken under a point 

to point basis. In this way, we obtained 142 out-

of-sample aluminum price forecasts.  

 

Table 1 – Potential explanatory variables 

 
 

Table 2 – Total transformations for explanatory variables  

 

Category Description Measure Label

Prices 3-month forward aluminum price, deflated by US Consumer Price Index $/t M3R

Brent oil price $/barrel BRENT

US Consumer Price Index Index CPI2013

Non-ferrous metals price Index NFINDEX

Price index for industrial non-ferrous products in the US Index USPPINFM

Industrial production Industrial production index in the US Index USIP

Primary metals production in the US Index USPMIP

Industrial production index in China Index CHIP

Industrial production index in Europe Index EURIP

Industrial production index in Japan Index JAPIP

Primary aluminum prodution Global primary aluminum capacity t CAP

Global primary aluminum production t GLPROD

Global primary aluminum utilization rate % GLCAPUT

Primary aluminum consumption Global primary aluminum consumption t GLCONS

Global primary aluminum consumption, excluding China t EXCONS

Primary aluminum inventories Global average inventory days days GLTOTDOC

Reported global inventory days, incluing in-transit metal days GLREPDOC

Global inventory days, excluding China days EXREPDO

London Metal Exchange inventory days days EXLMEDOC

Global primary aluminum inventories days GLSTOCK

Reported global inventory, incluing in-transit metal t GLREPSTO

Global inventory inventory, excluding China t EXTOTSTO

Reported global inventory inventory incluing in-transit metal t EXREPSTO

London Metal Exchange inventory t LMESTOCK

Exchange rate Effective US exchange rate based on currency basket Index FXUSD

Effective Euro exchange rate Index FXEUREFF

Japan Yen exhange rate Index FXJAP

Interest rates Three month Libot % p.a. LIBOR

Sctock market Dow Jones index Index DJ

Standard-Poors Index (SP 500) Index SP500

Transformation type > Level Difference Total

Potential explanatory variables 30

Transformation by each variable 13 24 37

Total number of transformations 390 720 1.110

Total analyses for weak exogeneity and causality 1.140
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We initially used 30 explanatory variables for the 

SARIMAX models (Table 1). Such variables were 

classified into 8 groups: (1) prices; (2) industrial 

production; (3) production; (4) demand; (5) 

inventories; (6) exchange rate; (7) interest rates; 

(8) stock prices. It was performed 1,140 variable 

transformations (Table 2), that were then tested 

for weak exogeneity and Granger causality to 

arrive at 13 covariates to be used in model 

estimations (Table 3).  

 

RESULTS 
 

 

      
INDIVIDUAL MODELS 

Five individual models were estimated: (i) AR(1) 

for benchmarking; (ii) ARMA(1,10); (iii) ARMAX 1; 

(iv) ARMAX 2; (v) Structural model.  

For the two SARIMAX models the following 

suppositions were tested in their specifications 

(LUTKEPOHL, 2007; WOOLDRIDGE, 2010): (a) the 

weak stationarity of the dependent and 

independent variables; (b) the weak exogeneity of 

the independent variables in relation to the 

dependent variable, in other words, the 

conditional expectation of error in relation to the 

independent variables is zero; (c) the model error 

is white noise, in other words, it follows a normal 

distribution, with a zero mean and constant 

variance. 

For the ARMAX 1 model, two independent 

variables were used, after performing the tests 

above: (a) BRENT_dif12: the difference of 12 

Brent crude oil price lags; (b) NFINDEX_dif4: the 

difference of 4 non-ferrous metals index lags. For 

the ARMAX 2 model, the independent variables 

used were: (a) DLM3R: the log difference of the 3-

month forward price of aluminum; (b) 

DLGLSTOCK: the log difference of the world stock 

of aluminum. 

Models were estimated using 12-month ahead 

point to point forecasts, through a 36-month 

 

Table 3 – Explanatory variable used in model estimations 

 

 

Category Original vriable Transformed variable Transformation

Prices M3R DLM3R_lag4 4-month difference of log price

BRENT BRENT_CHG6 6 month percent change

CPI2013 DLCPI2013_lag3 3-month difference of log price

NFINDEX NFINDEX_CHG5 5 month percent change

USPPINFM DLUSPMIP_lag5 5-month difference of log price

Industrial production CHIP CHIP_CHG1 One month percent change

JAPIP JAPIP_CHG5 5 month percent change

Primary aluminum inventories GLSTOCK GLSTOCK_CHG6 6 month percent change

EXTOTSTO EXTOTSTO_CHG6 6 month percent change

Exchange rate FXUSD FXUSD_dif4 6 4month percent change

Stock markets DJ DJ_dif1 One month difference

SP500 SP500_dif1 One month difference
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rolling window. Actual and estimated results are 

indicated in Figure 3. 

 

 

 Figure 3 – Individual model estimation results  

 

   

 

  

 

 

 

6.2 COMBINED MODELS  

For each one of the 60 rolling estimation 

windows, which resulted in 12-month ahea 

forecasts, from October 2009 to September 2014, 

9 combined models were developed. This 

represented 540 estimations, with which, added 

to the 710 estimations of the individual models, a 

total of 1,250 estimations were produced. The 

descriptions of the combined models are shown 

in Table 4. Figure 4 indicates results of actual and 

forecast values from combined models. 
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Table 4 – Description of combined models 

Model  Method for determining forecast combinations weights 

1. COMB_AVG1 Simple arithmetic average of the AR(1), ARIMA, ARMAX1 and Structural models  

2. COMB_AVG2 Simple arithmetic average of the AR(1), ARIMA and Structural models 

3. COMB_OLS Ordinary least squares of the AR(1), ARIMA, ARMAX1 and Structural models  

4. COMB_RMSE Weighted mean, based on the inverse of the RMSE of the AR(1), ARIMA and 
Structural 

5. COMB_AICC Weighted mean based on the AIC of the AR(1), ARIMA, ARMAX1and Structural 
models 

6. COMB_ERLS Minimization of the sum of the squares of the residuals, with the restriction that the 
sum of the weights is 1 for AR(1), ARIMA, ARMAX1 and Structural models 

7. COMB_NERLS Minimization of the sum of the sum of the squares of the residuals, with the 
restriction that the sum of the weights be 1 and not negative for AR(1), ARIMA and 
Structural models 

8. COMB_NRLS Minimization of the sum of the sum of the squares of the residuals, with the 
restriction that the sum of the weights be not negative for AR(1), ARIMA and 
Structural models 

9. COMB_ARMAX Least ordinary squares of the ARIMA and ARMAX2 models 

 

 

Figure 4 – Combined model estimation results  

COMB 1   COMB 2   COMB 3 

 
          COMB 4                                  COMB 5                                  COMB 6 

 
             COMB 7                                   COMB 8                                 COMB 9 
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COMPARISON OF MODELS 

Traditional measures 

For the 36 latest months (October/2011 to 

September/2014), combination model 9 – 

COMBARMAX - gave the best predictive 

performance for all traditional measures, 

followed by ARMAX2 and ARMA. Traditional 

measures included Mean Square Error (MSE), 

Root Mean Square Error (RMSE), Mean Average 

Error (MAE), Mean Square Percent Error (MSPE), 

Root Mean Square Percent Error (RMSPE). 

Combination 9 is obtained by the OLS of the 

ARMA and ARMAX2 models. For the 36 out-of-

sample latest months (October/2010 to 

September/2014), the best model was ARMAX2, 

followed by Combination 9 and ARMA. For the 60 

latest months (October/2009 to 

September/2014), there is an inversion and the 

ARMA performs best, followed by ARMAX2 and 

Combination 9. Tables 5, 6 and 7 compare the 

predictive performance of the models using 

traditional measures.  

 

On the other hand, the width of the confidence 

interval of ARMA is very high (around 1,400, 

2,000 and 2,600 for 36, 48 and 60 months, 

respectively) when compared with Combination 9 

and ARMAX2. The interval widths of the 

Combined 9 and ARMAX2 models are similar and 

the smallest of all the models, at around 46, 76, 

88 (US$/t), respectively for 36, 48 and 60 months.  

The two other models include Combination 5 and 

AR (1). Combination 5 is obtained using the 

Akaike information criterion method, including 

the AR(1), ARMA, ARMAX1 and Structural models. 

Combination 5 is the fourth best model for the 

latest 36 and 60 months, followed by AR (1). For 

48 months, the opposite happens, with AR(1) 

being the fourth best model, followed by 

Combination 5. The AR(1) model, which was 

accepted as the benchmark, therefore, was the 

fourth best model in the best case scenario, when 

performance over the last 48 months is assessed. 

It is worth emphasizing that over the last 36 

months Combined Model 9 reduced the 

traditional error measures, including MSE, RMSE, 

MAE and MAPE, with regard to the values of 

ARMA and ARMAX2. Based on MSPE, Model 9 

and ARMAX2 gave the same performance and, 

just based on RSPE, ARMAX2 has a negligible 

advantage. The improvement in the performance 

generated by Combination 9 is associated with 

the concept of risk diversification, which was 

mentioned previously in Section 2. Another 

important aspect was the introduction of the two 

exogenous variables in ARMAX2, which were: (i) 

global aluminum stocks, and (ii) the 3-month 

forward price of primary aluminum. Days in 

inventory is a fundamental variable in the global 

aluminum industry and acts as an indicator of 

price levels.  

 

Comparison of models using the Model 
Confidence Set 

Table 8 compares the predictive performance of 

the models by way of the MCS for the last 60, 48 

and 36 months of the sample. 
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Table 5 - Comparison of the Models – 36 latest months 

Model MSE RMSE MAE MAPE MSPE RMSPE CI Amplitude 

COMB 9 71,135.54 266.71 163.59 0.0832 0.0180 0.1342 46.98 

ARIMAX 2 71,277.47 266.98 163.81 0.0833 0.0180 0.1343 46.41 

ARMA 89,531.99 299.22 204.89 0.1055 0.0237 0.1538 1,415.12 

COMB 5 124,176.27 352.39 237.20 0.1204 0.0310 0.1760 984.25 

AR(1) 134,467.77 366.70 233.77 0.1190 0.0338 0.1839 1,600.15 

ARIMAX 1 150,370.41 387.78 263.33 0.1356 0.0398 0.1996 858.03 

COMB 8 162,205.55 402.75 258.90 0.1311 0.0400 0.2000 1,370.05 

COMB 1 168,288.02 410.23 247.04 0.1237 0.0403 0.2007 969.58 

COMB 7 175,182,55 418.55 263.06 0.1329 0.0430 0.2073 1,407.42 

COMB 4 183,683.90 428.58 255.25 0.1278 0.0442 0.2102 1,108.55 

COMB 2 185,268.43 430.43 255.61 0.1279 0.0445 0.2109 1,107.92 

COMB 3 260,321.80 510.22 338.44 0.1751 0.0702 0.2650 2,033.84 

COMB 6 263,861.42 513.67 339.07 0.1753 0.0708 0.2661 1,966.39 

Structural 487,983.25 698.56 384.84 0.1903 0.1119 0.3345 2,332.31 

 
 

Table 6 - Comparison of the Models – 48 latest months 

Model MSE RMSE MAE MAPE MSPE RMSPE CI Amplitude 

ARIMAX 2 103,882.99 322.31 227.77 0.1079 0.0228 0.1510 66.98 

COMB 9 103,909.72 322.35 227.69 0.1079 0.0228 0.1509 68.34 

ARMA 133,436.80 365.29 290.72 0.1385 0.0301 0.1735 1,996.53 

AR(1) 151,691.27 389.48 283.13 0.1382 0.0364 0.1907 2.441.62 

COMB 5 155,459.46 394.28 308.68 0.1482 0.0357 0.1889 1,453.90 

ARMAX 1 186,738.60 432.13 334.44 0.1631 0.0452 0.2126 966.57 

COMB 8 230,697.47 480.31 365.82 0.1727 0.0504 0.2245 1,899.86 

COMB 1 244,254.78 494.22 362.38 0.1689 0.0521 0.2283 1,432.48 

COMB 7 267,624.95 517.32 388.50 0.1820 0.0572 0.2391 1,898.55 

COMB 4 269,084.75 518.73 378.06 0.1760 0.0576 0.2399 1,590.90 

COMB 6 273,061.31 522.55 379.88 0.1767 0.0583 0.2414 1,594.63 

COMB 2 413,132.64 642.75 498.68 0.2380 0.0940 0.3066 2,587.16 

COMB 3 439,887.15 663.24 509.21 0.2421 0.0983 0.3136 2,802.29 

Structural 1,021,803.96 1,010.84 673.29 0.3045 0.1977 0.4446 3,155.47 

 
Table 7 - Comparison of the Models – 60 latest months 

Model MSE RMSE MAE MAPE MSPE RMSPE CI Amplitude 

ARMA 143,099.83 378.29 328.17 0.1556 0.0322 0.1793 2,614.87 

ARIMAX 2 206,498.50 454.42 342.84 0.1577 0.0416 0.2039 87.60 

COMB 9 207,764.76 455.81 343.49 0.1580 0.0418 0.2045 89.22 

COMB 5 210,630.33 458.94 392.73 0.1844 0.0454 0.2132 1,836.03 

AR(1) 213,865.76 462.46 375.73 0.1784 0.0479 0.2189 3,057.61 

ARIMAX 1 272,712.62 522.22 436.45 0.2071 0.0607 0.2463 1,063.25 

COMB 8 288,587.58 537.20 454.56 0.2122 0.0618 0.2487 1,330.19 

COMB 1 299,584.53 547.34 455.91 0.2100 0.0625 0.2500 1,753.38 

COMB 7 323,744.74 568.99 472.77 0.2195 0.0682 0.2611 2,332.36 

COMB 4 335,272.77 579.03 480.28 0.2209 0.0699 0.2645 1,918.97 

COMB 2 340,748.18 583.74 483.51 0.2222 0.0710 0.2664 1,923.52 

COMB 6 545,235.78 738.40 638.69 0.3003 0.1196 0.3459 3,350.75 

COMB 3 575,749.72 758.78 648.18 0.3037 0.1246 0.3531 3,570.85 

Structural 1,366,861.49 1,169.13 931.70 0.4198 0.2658 0.5155 3,530.25 
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Table 8 - Comparison of the models using the MCS 
60 Months  48 Months  36 Months  

ARMA 1.0000* ARMAX 2 1.0000* COMB_ARMAX 1.0000* 

ARMAX 2 0.2884* COMB_ARMAX 0.8345* ARMAX 2 0.1784** 

COMB_ARMAX 0.2873*   ARMA 0.1784** 

COMB_AIC 0.2334*     

AR(1) 0.2168*     

ARMAX 1 0.1063**     

Estrutural 0.1063**     

COMB _AVG1 0.1063**     

COMB_AVG2 0.1063**     

COMB_OLS 0.1063**     

COMB_RMSE 0.1063**     

COMB_NERLS 0.1063**     

COMB_ERLS 0.1063**     

COMB_NRLS 0.1063**     

 

 
For the latest 36 months (October/2011 to 

September/2014), Combination 9 

(COMB_ARMAX, which includes ARMA and 

ARMAX2 by the OLS method) gave the biggest 

MCS p-valor (1000), and was by far and away the 

best model at a significance level of 0.10. The two 

other comparable models, below Combination 9, 

were ARMAX2 and ARMA with an MCS p-valor of 

0.1784. 

For the latest 48 months (October/2010 to 

September/2014), the set of models comparable 

to the MCS descriptive level of 0.10 included 

ARMAX2 and COMB_ARMAX. ARMAX gave the 

best descriptive MCS level, followed by the 

combination, with a descriptive MCS level of 

0.8345. 

For the latest 60 months (October/2009 to 

September/2014), the MCS included 5 models 

with a forecast performance equivalent to a 

confidence level of 0.10 of the MCS, as indicated 

below. All the other models had a weaker 

performance, with a descriptive MCS level of 

0.1063. The models are: ARMA, ARMAX  2, 

COMB_ARMAX 2, COMB_AIC, AR(1) 

The ARMA/ARMAX (COMB_ARMAX) combination 

was the only model that was among the best sets 

evaluated by the MCS for the three periods 

analyzed. For the three latest years, this 

combination was the model with the biggest 

predictive performance; no other performed 

comparably at a descriptive MCS level of 0.10. 

This fact indicates that the introduction of the 

exogenous variables of the 3-month forward price 

of aluminum and global stocks levels of primary 

aluminum was a differential for improving 

accuracy.  

 

CONCLUSION 
 

 

The contributions of this work include three main 

aspects: first, the use of combinations of forecasts 

and model selection using the Model Confidence 

Set (MCS), which was not found in the literature 

on aluminum price forecasts. This approach 

represents an innovative study in the global 

aluminum industry, leading to improvements in 

accuracy and model selection, when compared 

with traditional methods. 

Second, two ARMAX models were proposed, 

whose approach was also not found in the 

literature for forecasting aluminum prices. The 

study showed the relevance of considering the 3-

month forward price and world stocks for 

increasing forecast accuracy.  
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Third, the work showed that the optimal 

combination for the 12-month ahead forecast for 

aluminum prices was the model that included 

ARMA and ARMAX, adjusted by the least ordinary 

squares. This combination gave a small 

confidence interval of below US$ 100/t, 

equivalent to 5% of the global average of the 

entire sample analyzed. This conclusion is 

relevant when it comes to decision-making by 

producers (investment decisions), consumers 

(raw materials supply strategies), participants in 

the finance market (financing aluminum stocks) 

and governments (industrial policy). 

Suggestions for future studies and for extending 

this work include: 

Combining models that focus on the probability 

densities of aluminum prices in order to estimate 

the probability that prices will remain above or 

below a certain level, or within a band, which is 

relevant when it comes to the industry taking 

strategic and tactical decisions 

Combination models for high frequency data 

capable of increasing the accuracy of price 

forecasts in relation to conventional volatility 

methods. 

Determining prior indicators, based on 

combinations of independent variables for 

increasing the predictability of structural shocks, 

the formulation of scenarios and for supporting 

decision-making by governments and sectors of 

the aluminum chain. 
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